A Survey on Small Language Models in the Era of Large Language
Models: Architecture, Capabilities, and Trustworthiness

Fali Wang Minhua Lin Yao Ma
The Pennsylvania State University The Pennsylvania State University Rensselaer Polytechnic Institute
University Park, USA University Park, USA Troy, USA
fqw5095@psu.edu mfl5681@psu.edu may13@rpi.edu
Hui Liu Qi He Xianfeng Tang
Amazon Amazon Amazon
Palo Alto, USA Palo Alto, USA Palo Alto, USA

liunhu@amazon.com

qih@amazon.com

tangxianfeng@outlook.com

Jiliang Tang Jian Pei Suhang Wang"
Michigan State University Duke University The Pennsylvania State University
East Lansing, USA Durham, USA University Park, USA
tangjili@msu.edu j.pei@duke.edu szw494@psu.edu

Abstract

Large language models (LLMs) based on Transformer architecture
are powerful but face challenges with deployment, inference latency,
and costly fine-tuning. These limitations highlight the emerging
potential of small language models (SLMs), which can either replace
LLMs through innovative architectures and technologies, or assist
them as efficient proxy or reward models. Emerging architectures
such as Mamba and xLSTM address the quadratic scaling of in-
ference with window length in Transformers by enabling linear
scaling. To maximize SLM performance, test-time compute scaling
strategies reduce the performance gap with LLMs by allocating
extra compute budget during test time. Beyond standalone usage,
SLMs could also assist in LLMs via weak-to-strong learning, proxy
tuning, and guarding, fostering secure and efficient LLM deploy-
ment. Lastly, the trustworthiness of SLMs remains a critical yet
underexplored research area. However, there is a lack of tutorials
on cutting-edge SLM technologies, prompting us to conduct one.
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1 Introduction

Large language models (LLMs) have revolutionized various fields
such as Al for science [7, 67, 94, 102], programming [84], and human-
centered interaction [121]. However, their massive parameter sizes
and commonly used Transformer architecture often pose significant
challenges: (1) common local devices cannot load the large-scale
parameters and hard to handle the cache storage; (2) huge computa-
tional amount cause large inference latency unsuitable for real-time
applications; and (3) they make domain-specific fine-tuning compu-
tationally demanding. Consequently, small language models (SLMs),
which excel in efficiency, cost, and flexibility, have emerged with
new potential in the era of LLMs, offering support or replacing
LLMs to overcome these challenges. We collect a series of newly
released SLMs in Table 1.

The Transformer architecture [93], driven by self-attention, re-
mains the preferred framework for LLMs. To enable local deploy-
ment and enhance performance, smaller-scale Transformers are
being explored [64, 90] by optimizing components including acti-
vation functions, attention mechanisms, layer normalization, and
parameter reuse. Despite its strengths, the Transformer’s reliance
on historical key-value pairs causes inefficient inference, facing qua-
dratic computational complexity O(L?) and high KV cache mem-
ory demands for long sequences. To address these issues, ongoing
research is developing new architectures like the Mamba series
[20, 22, 28, 30, 50, 115] and xLSTM [13] to improve inference effi-
ciency and memory usage.

Deploying SLMs often results in inferior performance on spe-
cific tasks compared to LLMs. To bridge performance gaps, test-
time compute scaling [61, 85, 104] proves effective by providing
additional computation during inference, such as repeated sam-
pling and verifier-based selection, significantly boosting model
performance. Beyond simply replacing LLMs, SLMs could assist
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in enhancing their usage and security via weak-to-strong learn-
ing [16, 55, 70, 86, 113, 129], proxy tuning [60, 71, 122], decod-
ing [56, 84, 128], and guard [45, 48]. During weak-to-strong learn-
ing, SLMs generate weakly supervised datasets that activate LLMs’
knowledge. They also function as proxies for fine-tuning by inte-
grating log probabilities with behavioral deltas from smaller models
and serve as reward models to guide LLMs during decoding without
additional training. Additionally, SLMs enhance LLM security by
filtering out potential attack samples, thus mitigating safety risks in
conversational Al Importantly, it is essential to address trustwor-
thiness issues like susceptibility to adversarial attacks and privacy
breaches [21, 38, 95]. To summarize, our key contributions include:

o In Section 2, we explore various techniques for enhancing Trans-
formers for SLMs and introduce new architectures suitable for
small models.

o In Section 3, we examine strategies for elevating SLMs from weak
to strong through test-time scaling and discuss how weak SLMs
can support strong LLMs in fine-tuning, decoding, and guarding.

o In Section 4, we assess the trustworthiness of SLMs, focusing
on issues including robustness, toxicity, misinformation, hallu-
cination, sycophancy, privacy, and fairness, while providing a
comprehensive taxonomy of current evaluation methodologies.

2 SLM Architecture

SLMs commonly employ the Transformer architecture [93], which
utilizes self-attention mechanisms to manage long-range text de-
pendencies. Due to the quadratic-time inference associated with
the attention mechanism, several subquadratic-time architectures,
such as Mamba [30] and xLSTM [13], have been proposed. We
have collected newly-released SLMs based on these architectures
in Table 1. These architectures are detailed below.

2.1 Transformer for SLMs

Transformer architecture [93] remains the dominant framework for
LLMs, utilized across platforms from open-source like Llama [91] to
proprietary systems like GPT-4 [3]. Given the extensive use of LLMs,
considerable efforts are focused on enhancing Transformer-based
SLMs to closely match the performance of their larger counterparts.
Generally, in the Transformer architecture, input tokens receive
token embeddings and are processed through self-attention that
dynamically weights input importance; this output feeds into a feed-
forward neural network with an activation function for non-linear
processing, and each output is normalized by layer normalization to
stabilize learning and facilitate smooth gradient flow. This section
examines how Transformers advance SLMs, focusing on core com-
ponents, including the attention mechanism, activation functions
in feed-forward networks, and layer normalization, as well as their
strategic parameter sharing.

Self-Attention Mechanism. The self-attention mechanism enables
models to assess the significance of all preceding token representa-
tions when encoding a current token. It is mathematically expressed
as:

Attention(Q, K, V) = softmax ( A% (1)

.
Vi
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Table 1: Overview of New SLMs (<7B) in 2024 (Excluding
Mamba-1, Released in 2023). We correct several erroneous
activations in the SLMs collection in [66]. Architecture Sym-
bols: 7: Transformer, M: Mamba, X: xLSTM.

Model Size Date Attention | Activation ;";’;:
7 - Phi-4-mini [2] 3B 2025.03 GOA GEGLU RMSNorm
7 SmolLM-2 [9] 135‘\11*7;5[’“' 2025.02 GOA SwiGLU RMSNorm
T ge:{fif_];;{[:?]‘““ll' 158 2025.01 GOA SwiGLU RMSNorm
7 : PhoneLM [116] 0.5B, 1.5B 2024.11 MHA ReLU RMSNorm
M Hymba [22] 15B 202411 SSM+TF GEGLU | LayerNorm
T : MiniCPM-3 [41] 4B 2024.09 MLA UNK RMSNorm
7 Llama-32 [5] 18,38 2024.09 GoA SwiGLU | RMSNorm
T : Qwen-25 [112] 05B,15B,3B | 202409 GQA SWiGLU | RMSNorm
7 - Phi-3.5-mini [1] 278 2024.09 GOA GEGLU RMSNorm
7 - DCLM [54] 14 202408 MHA SwiGLU | LayerNorm
7 : H20-Danube3 [77] 0.5B, 4B 2024.07 GQA SwiGLU RMSNorm
7+ Fox-1 [89] 16B 202407 GQA SwiGLU | RMSNorm
135M GOA SwiGLU | RMSNorm
7 : SmolLM [10] 360M 2024.07 GoA SWiGLU | RMSNorm
17B MHA SWiGLU | RMSNorm
7 - Minitron [73] m 202407 MHA GELU LayerNorm
7 Gemma-2 [55] 2B 202407 GQA GELU RMSNorm
7 Qwenz [111] 18B, 4B 2024.06 GOA SWiGLU | RMSNorm
M: Zamba [28] 1.2B 2024.05 SSM+TF UNK LayerNorm
X:xLSTM [13] 17265(;\{31,315224 2024.05 LSTM GELU LayerNorm
M Mamba 2 [20] 278 202405 SSM SwiGLU | LayerNorm
7" OpenELM [69] 27:”;‘]; ‘fg‘“ 2024.04 GOA SwiGLU RMSNorm
7 OLMo [29] 12B 202404 MHA SwiGLU | RMSNorm
7 - Phi-3-mini [1] 388 2024.04 GQA GEGLU RMSNorm
7+ MiniCPM [41] 1B, 2B 202404 GQA UNK RMSNorm
7 : MobiLlama [90] 0.5B, 1B 2024.02 GQA SWiGLU | RMSNorm
7 : Gemma-1 [87] 2B 2024.02 MQA GELU RMSNorm
7 : Qwen-15 [12] 05B 202402 GQA SwiGLU | RMSNorm
7 - StableLM 2 zephyr [14] 1.6B 202401 MHA SwiGLU | LayerNorm
130M, 370M,
M: Mamba 1 [30] 790M, 1.4B, 2023.12 SSM SwiGLU LayerNorm
2.8B

where Q = XWQ, K = XwK ,and V = XWV denote the query,
key, and value matrices, respectively. These matrices are scaled by
\/d_k to ensure stability, with dj. denoting the dimension of the key
matrices. The dot product QK" measures the similarity between
the query and key vectors. For encoding the current position, the
query might be represented as a vector q, resulting in an output
that is a weighted vector derived from prior values corresponding
to previous token representations. Multi-Head Attention (MHA)
leverages multiple “heads” to capture diverse information from
various representation subspaces. Each head in the Multi-Head
Attention mechanism operates independently, allowing the model
to process information across different subspaces. This captures a
broader range of data features.

~(0000 00000 00000 O

(a) MHA (b) MQA (c) GQA (d) MLA
Figure 1: Multi-head Attention Mechanism and its variants.
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Table 2: Comparison of Activation Functions.

Name Activation Function

ReLU [4] f(x) = max(0, x)

- ’ 1 e X

GELU [36 x5 [1+erf| ==
o [eer(35)]

GEGLU [83] x - GELU(Wx + b)

SwiGLU [83] Swish(x - W +b) O (x - V +¢), Swish(x) = x - sigmoid(x)

Building on this, many variants have improved the self-attention
mechanism for memory efficiency and computational speed in-
cluding MQA [82], GQA [6], and MLA [59], as shown in Figure
1. Multi-Query Attention (MQA) [82] addresses the KV cache bot-
tleneck in MHA by proposing that all heads share the same keys
and values, thus reducing memory and computational overhead.
Grouped Query Attention (GQA) [6] strikes a balance by assigning
subgroups of query heads to share a single key and value head,
minimizing the number of key-value pairs. In contrast, Multi-Head
Latent Attention (MLA) [59] compresses keys and values into a
latent vector, enhancing management and boosting inference effi-
ciency. Recent SLMs often utilize GQA in their self-attention mecha-
nisms, offering a flexible balance between reducing cache space and
maintaining functionality.

Feedforward Network (FEN). FEN comprises two linear transfor-
mations separated by a non-linear activation function, typically
represented as: FFN(x) = o(xW1 + b1)W3 + by, where W1 and W
are the weight matrices, and b and b, are bias terms. o introduces
non-linearity, allowing the model to learn complex patterns. Popu-
lar activation functions include ReLU [4], GELU [36], GEGLU [83],
and SwiGLU [83], shown in Table 2. ReLU promotes sparsity, which
speeds up computation, while SwiGLU offers parameterized flexibility
for various tasks, making it favored in SLMs for its effectiveness.

Layer Normalization. Layer normalization [49] enhances train-
ing stability by normalizing the outputs of layers, thereby accel-
erating convergence. There are primarily two types of layer nor-
malization techniques utilized: (i) Non-Parametric Layer Norm,
which normalizes inputs based on the mean and variance calculated
across the dimensions of a layer without any learnable parameters.
(ii) Parametric Layer Norm, which incorporates learnable param-
eters, to allow for adaptive scaling and bias, thus enhancing the
model’s flexibility. In addition, RMS Norm (Root Mean Square
Layer Normalization) [120] simplifies computations by utilizing
the root mean square of the inputs. Owing to its robustness in ex-
pressiveness, RMS Norm has gained popularity over traditional Layer
Norm in small language models.

Parameter Sharing. In SLM architectures, parameter-sharing tech-
niques are crucial for reducing model size and space usage. As
shown in Figure 2, parameter sharing techniques can be classified
into three categories: (i) block sharing, which includes immediate
block sharing, repeat-all-over sharing, and reverse sharing, (ii) em-
bedding sharing where the input embedding and the final output
weight are identical, and (iii) FFN sharing that involves using a com-
mon FFN module across all transformer layers. These approaches
can be combined for enhanced efficiency. Repeat-all-over sharing
generally performs the best in block sharing, whereas immediate
block sharing offers memory savings due to the efficient use of
shared cache among closely positioned blocks. Embedding sharing
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Figure 2: Parameter sharing technologies.

can reduce parameters by about 20% in SLMs, and FFN sharing can
achieve a 60% reduction, significantly enhancing parameter effi-
ciency while presenting a viable performance-parameter trade-off.

2.2 Mamba

Transformer architecture suffers from quadratic computational
complexity. Mamba series [20, 22, 28, 30, 50, 115] aims to improve
inference efficiency and memory usage.

2.2.1 From SSM to Mamba. State space models [31] utilize the
minimal number of variables to describe a dynamic system and can
process sequential data as follows:

hi = Ahj_1 + Bxy, yj = Chy 2
where x; and yy. are the input-output sequence pairs, A, B, and C
are learnable weight matrices, and hy is the hidden state at time
step k. However, traditional SSMs have fixed parameters and treat
all input tokens uniformly, which constrains their utility in lan-
guage modeling. To overcome this limitation, two key innovations
transform SSMs into the Mamba architecture:

(1) Selective Scanning Mechanism. Traditional SSMs cannot per-
form selective copying or induction head tasks due to their Lin-
ear Time Invariant (LTI) nature, with fixed parameters A, B,C, A
(where A denotes the discrete step size in SSMs) for all input tokens.
This design inhibits content-aware inference, essential for language
models, as it treats each token uniformly. To overcome this, Mamba
introduces input-dependent parameters B(x), C(x), A(x), allowing
a unique set of B, C, A for each input token (A remains unchanged).

(2) Hardware-Aware Algorithm. Frequent data transfers between
GPUs’ DRAM and SRAM reduce computational efficiency. To ad-
dress this issue, a hardware-aware algorithm is designed to mini-
mize these transfers by integrating discrete steps, selective scanning,
and multiplication with C into a single kernel fusion operation.

2.2.2  Mamba Blocks. Multiple Mamba blocks can be stacked and
used sequentially, similar to transformer layers, as depicted in Fig-
ure 3. Initially, input tokens are linearly embedded into a hidden
space, then processed by convolutional layers coupled with the
SiLU activation function. Subsequently, a selective SSM module
efficiently processes these embeddings to capture context-specific
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Figure 3: Mamba 1 architecture [30].

information. The resulting representations undergo additional non-
linear activation for enhanced expressivity, and a final linear pro-
jection maps the features into output space.

2.2.3  Mamba-Derivative Work. Mamba architecture has inspired
various innovations focused on fuing Transformer and SSM. Mamba-
2 [20] utilizes the structured state space duality to increase compu-
tational efficiency, while Jamba [50] alternates attention and SSM
layers. In lightweight design, Hymba [22] combines attention and
SSM heads in small models (1.5B) for enhanced memory efficiency,
and Zamba [28] utilizes a Mamba backbone and a shared attention
module to reduce memory use. LongMamba [115] improves long-
context capabilities with a token filtering mechanism, enhancing
document comprehension. Overall, these initiatives utilize Mamba’s
linear complexity to enhance efficient sequential modeling.

2.3 xLSTM

Long Short-Term Memory (LSTM) [37], similar in concept to Mamba
[30] for its introduction of time-dependent weights, was pivotal
in establishing foundational techniques for language modeling.
However, the advent of Transformers [93] has marked a substan-
tial paradigm shift in this field. This raises an intriguing question:
Can LSTMs be effectively scaled to billion-parameter models with
contemporary technologies? In response, the Extended Long Short-
Term Memory (xLSTM) framework [13] has been developed to
augment traditional LSTMs by incorporating exponential gating
and innovative memory structures. This framework is bifurcated
into two distinct components: SLSTM, which utilizes memory mix-
ing for enhanced data integration, and mLSTM, which eschews
mixing to facilitate parallel processing. Together, these elements
comprise the comprehensive xXLSTM architecture, as depicted in
Figure 4 and further detailed below.

2.3.1 LSTM. LSTMs mitigate the vanishing gradient problem of
RNN s through the constant error carousel and gating mechanisms

Fali Wang et al.

by the following update rules at time step t:

;=1 0c-1+i; Oz (cell state)

h; =o0; 0 hy, h= Y(ct) (hidden state)
zr = ¢(Zy), %y =w, X¢ +1.h;_1 + b, (cell input)

ir = o(ip), i = w;rxt +rih;—1 +b; (input gate)
f; = U(ft), £, = w}—xt +rrhso1 + by (forget gate)
o = 0(0;), 0 = ngt +r1ohs—1 + b, (output gate)

where weight vectors w;, wj, W, Wo correspond to the inputs x,
and cell, input, forget, and output gates. Recurrent weights rz, rj, r £
I, link the hidden state h;_ to these gates. Bias terms are by, b;, b £
and b,. Activation functions ¢ (usually tanh) and  normalize the
otherwise unbounded cell state. All gates use sigmoid activation.

LSTMs have three key limitations: First, they struggle with revis-
ing dynamic storage decisions. Second, they have limited storage
capacity, as all data is compressed into a single cell state c. Third,
their parallel processing capabilities are hindered by memory mix-
ing, necessitating sequential hidden-to-hidden connections.

2.3.2 sLSTM. To improve the ability of LSTMs to revise storage
decisions, exponential gates have been introduced. Particularly,
input and forget gates can utilize exponential activation functions.
For normalization purposes, a normalizer state is introduced that
aggregates the product of the input gate with all subsequent forget
gates. Based on the traditional LSTM, the sSLSTM changes the input
gate to iy = exp(iz), the forget gate to f; = a(ft) or exp(ﬁ), adds a
normalizer state n; = f; © n;—; + ir, and changes the hidden state
toh; =0; © ﬁt, where l:lt = fl—’

The sLSTM enables multiple memory cells similar to the original
LSTM via recurrent connections from the hidden state h to memory
cell inputs z. This setup supports multiple heads without memory
mixing across the heads, but only memory mixing across cells
within each head.

2.3.3 mLSTM. To improve LSTM storage capacity, the memory cell
dimensionality is increased from a vector ¢ to a matrix C € R%%4,
Based on the traditional LSTM, the mLSTM modifies the cell state
equation to C; = f; © C4—1 +i; © (vtk:), introduces n; = f; ©
n;-1 +i; © k;, and defines q; = Wgx; +bg, k; = ‘/LE(W;CX; +by),

v; = Wyx; +by. It changes the input gate to i; = exp(it), the forget

LSTM Memory Cells XLSTM Blocks XLSTM
Memory Cells sLSTM L
Constant Error Carousel Exponential gating
Sigmoid Gating — New Memory Mixing

Recurrent Inference
Recurrent Training

e dlin

€ = feCeo + iz
he = o (cr)

. |
mLSTM F——
- . [Enn ] I
Exponential gating o) &
I Matrix Memory otm E o)

Parallel Training ) 3 I

Covariance Update Rule 3 £ oo
- I

T

Figure 4: The extended LSTM (xLSTM) family [13].
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gate to f; = a(f}) or exp(f}), and the hidden state to h; = o; © hy,
I Ciqs

where h; = max(nl 4, 11)"

2.34 xLSTM. xLSTM has two block types: (i) post up-projection,
using sSLSTM with optional convolutions and gated MLPs, and (ii)
pre up-projection, using mLSTM enclosed in two MLPs via convo-
lution, learnable connections, and output gates. xLSTMs are built
with these blocks and feature LayerNorm residual backbones. xL-
STM is compared with Llama [45], and Mamba [30] across model
sizes (125M, 350M, 760M, 1.3B). In the PALOMA benchmark [68], it
excels in length extrapolation and outperforms same-size baselines
in downstream tasks. xXLSTM shows better scalability and higher
throughput than Transformers and SSMs due to efficient memory
use, allowing larger batches. These findings highlight xLSTM’s po-
tential in small model applications, though scaling to larger models
remains unexplored. Due to XLSTM’s unique efficiency in long-
term sequence modeling, it has become the preferred architecture
for many follow-up studies, including modeling long-range de-
pendencies in biological and chemical sequences [80], time series
forecasting [8], audio [110], and stock prediction [25].

3 Weak to Strong Methods

In the era of large language models, small language models maintain
advantages due to their easy deployment, despite typically under-
performing compared to large language models. To bridge this gap,
methods have been developed to enhance SLMs, enabling them
to beat LLMs in specific scenarios, noted as "SLMs from weak to
strong." Moreover, SLMs’ lightweight nature facilitates their usage
in supporting LLMs through fine-tuning, decoding, and safeguard-
ing, illustrating another aspect of the "weak-to-strong" strategy.

3.1 SLMs Beat LLMs in Specific Scenarios

Typically, SLMs underperform LLMs due to smaller parameter sizes.
However, developers employ technologies such as supervised fine-
tuning, distillation, and quantization to enhance SLMs. Among
them, test-time scaling is a cutting-edge technology that can po-
tentially beat LLMs, so we highlight recent work on it. For more
details on other technologies enhancing SLMs, see Wang et al. [96].

Test-Time Compute Scaling. Test-time compute scaling (also
known as inference scaling) enhances language models by allocat-
ing more computational resources during test time, utilizing strate-
gies such as best-of-N [57], majority voting [100], and tree search
[108]. A typical best-of-N approach involves sampling multiple
outputs from the model, which are then assessed by a reward-based
verifier to select the optimal one. Both Snell et al. [85] and Wu et al.
[104] explore the trade-off between test-time scaling and training
scaling. Snell et al. [85] found that SLMs with test-time compute
scaling outperform models that are 14 times larger. Wu et al. [104]
indicates that smaller models equipped with advanced test-time
scaling algorithms offer superior performance. Further research by
Liu et al. [61] shows that under test-time scaling strategies, smaller
models excel all while requiring fewer FLOPs, e.g., a 0.5B SLM out-
performs GPT-4o, a 3B LLM surpasses a 405B LLM, and a 7B LLM
exceeds both o1 and DeepSeek-R1 [32].

Compute-optimal Test-Time Scaling. Compute-optimal test-
time scaling aims to allocate the optimal compute for each problem,
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being defined as selecting optimal test-time scaling hyperparam-
eters for a given prompt, such as scaling strategies, policy model
selection, model size, and prompt designs. Various studies define
the compute-optimal test-time scaling strategy, each differing in
the selection space of hyperparameters [58, 61, 85]. Snell et al. [85]
first formally defines Target(0, N, q) as the distribution over output
tokens induced by the language model for a given prompt g, using
test-time compute hyper-parameters 0, and a compute budget of
N. The goal is to select optimal hyperparameters 6 that maximize
accuracy for a given problem. Formally:

Oguar (q) (V) = arg max (Ey~Target(e,N,q> [1 yzy*(q)]) (3)

where y*(g) is the ground-truth response for ¢, and Gs’a* @ (N)
indicates the strategy for problem g within a given budget N. This
definition shows that scaling strategies are question-dependent,
which slightly diverges from the concurrent study [104]. The study
[61] suggests incorporating reward models in scaling decisions.

Strategies for Compute-optimal Scaling. Building on this
problem, existing works design specific test-time compute-optimal
scaling methods. Snell et al. [85] finds that the efficacy of meth-
ods varies with the computational budget and problem difficulty:
Beam search excels with complex problems and limited compute
budget; best-of-N is more effective for simpler problems and higher
budgets. Inspired by this, they adapt search settings to take into
account problem difficulty and compute budget, significantly en-
hancing performance. Additionally, Liu et al. [61] further refines
this method to account for variability in reward models, as they per-
form differently at various inference lengths. For instance, tokens
scaled with RLHFlow-PRM-Deepseek-8B are consistently larger
than those of RLHFlowPRM-Mistral-8B—nearly double—owing to
the longer training data length in DeepSeek PRM compared to
Mistral-PRM-Data.

3.2 SLMs Help LLM Fine-tuning

This subsection introduces two paradigms by which SLMs can as-
sist in fine-tuning of LLMs: weak-to-strong learning and proxy
fine-tuning. First, weak-to-strong learning can guide LLMs with
SLM-generated datasets. As LLMs advance and often outperform
humans in complex tasks, the challenge of providing high-quality
data emerges due to potentially simplistic or incorrect human an-
notations [16, 55, 113, 123, 129]. Burns et al. [16] introduced the
weak-to-strong learning to explore if weak SLMs can effectively
guide strong LLMs. This method is effective for two reasons: (1)
strong models can replicate weak models, including their errors,
while maintaining robust task representations, and (2) even in-
accurate supervision from weak models can trigger pre-existing
knowledge or capabilities. Strong models trained with weak super-
vision often underperform those fine-tuned on ground-truth data.
To bridge this gap, Yang et al. [113] and Zhou et al. [129] focus on
increasing data utilization effectiveness from weak models, employ-
ing strategies such as contrastive learning on incorrect samples
and intensively learning on samples where LLMs are overconfident.
SLMs could also enhance data quality. For example, Superfilter-
ing [55] leverages SLMs to filter low-quality data for LLMs via
difficulty-aware selection. Second, proxy fine-tuning with SLMs can
approximate gradients for fine-tuning large-scale LLMs on target
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datasets [60, 71, 122, 124]. Fine-tuning LLMs is costly, while SLMs
can effectively approximate the gradients required for fine-tuning
LLMs. For instance, both Proxy-Tuning [60] and Emulated Fine-
Tuning (EFT) [71] fine-tune a smaller LM and apply the predictive
differences from the tuned and untuned small LMs to modify the
original predictions of a larger, untuned model, while maintaining
the benefits of large-scale pretraining. In a related direction, Lo-
RAM [122] employs LoRA on a pruned SLM, obtaining incremental
low-rank matrices that are subsequently restored onto the original
large model during inference. Zhang et al. [124] propose training
LLM agents without modifying weights by forging agent functions,
which can potentially be implemented using small language models.

3.3 SLMs Guide LLM Decoding

Learning from human feedback has gained widespread attention
due to its ability to utilize human-annotated data to align with hu-
man preferences, primarily by maximizing expected reward scores
from implicit or explicit reward models. Alternatively, SLMs could
serve as reward models for the alignment. Typically, this alignment
process involves a greedy search at test time aimed at maximiz-
ing the log probability offsets between the tuned and untuned
small models while sampling from a fixed large model [130]. Such
weak-to-strong search strategy has been applied to various LLM
applications, such as safety alignment [84], jailbreak attacks [128],
and unlearning [43].

Multi-objective Decoding Considering the different alignment
objectives across scenarios and users, there is a need for on-the-fly
adaptation of language models to cater to various objective combi-
nations. This raises a question: Given a set of policies corresponding
to different reward models, can we find a way that does not require
fine-tuning LLMs to correspond to the multi-policies, which would
be time-consuming and difficult? Multi-Objective Decoding (MOD)
[84] introduces a method for combining prediction distributions
based on multiple reward models, each trained for an individual
objective. This approach identifies a closed-form solution among
f-divergence regularized alignment methods like PPO and DPO
through Legendre transform [75]. This method allows for the com-
bination of any reward models at inference time, eliminating the
need for retraining reward models.

Weak-to-strong Jailbreak Attack The weak-to-strong search
can also conduct jailbreak attacks on LLMs [128], revealing that
most jailbreak tokens surface within the first ten tokens. The logits
from strong, safe models, plus the unsafe logit offset between weak
safe models and unsafe ones, can produce a jailbreak token from the
strong model. This suggests that even secure LLMs can be misled by
unsafe, weak SLMs into generating undesired outputs with targeted
guidance. This method is computationally efficient, avoiding the
need for extensive computations to find optimal decoding parame-
ters or optimize prompts, and it can produce more harmful content
than smaller attack models alone.

Weak-to-strong Unlearning The weak-to-strong decoding can
also be applied to LLM unlearning issues. LLMs may cause privacy
leaks and copyright infringement due to their memory of training
data. Existing LLM unlearning methods require retraining mod-
els from scratch [126], which is impractical for black-box models.
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Hence, §-Unlearning [43] is proposed, an offset unlearning frame-
work for black-box LLMs that learns the required logit offsets by
comparing the logits of a small, white-box model with the original
logits without fine-tuning the black-box LLM.

3.4 SLMs Guard LLMs

As demonstrated in recent studies [33, 62, 78, 81, 119], LLMs exhibit
significant vulnerabilities to adversarial attacks and jailbreaking
attempts. For instance, Wang et al. [98] illustrate that ChatGPT
underperforms when evaluated on adversarial datasets, highlight-
ing ongoing risks associated with adversarial vulnerabilities. This
reinforces the need for robust guardrails in generative Al systems.
Beyond developing inherently trustworthy LLMs, the adoption of
SLMs for reinforcing LLM safety [45, 48] and hallucination detec-
tion [92, 109] has gained considerable attention.

SLMs as Guardian. To address safety concerns of LLMs, several
works [45, 48, 78, 99] have been conducted to use SLMs to help
improve the safety of LLMs. For example, Llama Guard [45], fine-
tuned on Llama2-7B, provides a publicly available tool designed
explicitly for identifying safety risks in conversational prompts and
responses. However, this tool primarily assesses the harmfulness of
questions and answers without enabling the generation of fluent,
safeguarded responses. To address this shortcoming, Kwon et al.
[48] propose a specialized SLM capable of concurrently detecting
harmful queries and generating safeguard-oriented, explanatory
responses, thus significantly enhancing conversational Al safety.
Additionally, Sawtell et al. [78] illustrates that SLMs can serve as
robust feature extractors, effectively training simple classifiers with
fewer than 100 high-quality examples. These classifiers support
tasks including content safety classification, prompt injection detec-
tion, and simultaneous token generation for improved safety. Fur-
ther advancements include STAND-Guard [99], which fine-tunes
SLMs to monitor the safety of generated content, especially ad-
dressing out-of-distribution scenarios. Similarly, TorchOpera [34]
integrates multiple SLMs serving as safety detectors and repair
modules, enhancing prompt safety and response quality through
enriched context and defined corrective guidelines.

SLMs as Hallucination Detectors. To address the challenge of
hallucination detection in LLMs, recent works [11, 92, 109, 127] have
focused on calibrating model confidence through auxiliary SLMs.
These auxiliary models analyze both the original questions and the
corresponding answers produced by LLMs to generate reliable con-
fidence estimates. The calibration training minimizes discrepancies
between predicted confidence scores and actual calibration errors.
For example, APRICOT [92] leverages an auxiliary DeBERTaV3
model [35] to assess the confidence of LLM responses to improve
the expression of uncertainty and the precision of response adjust-
ments. Similarly, POLAR [127] proposes a self-supervised calibra-
tion technique to align LLM outputs with various weak supervision
signals, which refines model confidence and reducing potential inac-
curacies. Moreover, SLMs have also been employed to evaluate the
internal states of LLMs, predicting the probability of hallucinated
content. For example, Xu et al. [109] introduce a lightweight detec-
tor to analyze token-level contributions to hallucinations. SAPLMA
[11] demonstrates that internal states within LLMs carry valuable
signals about the truthfulness of their generated statements and
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achieves impressive classification accuracies ranging from 71% to
83%. Additionally, recent approaches [33, 40] have integrated SLMs
into unified frameworks designed to enhance real-time hallucina-
tion detection. For instance, Hu et al. [42] propose using an SLM
classifier for initial hallucination detection. Furthermore, Han et al.
[33] employs customized SLMs to identify unsafe or hallucinated
content for LLMs. Collectively, these approaches demonstrate the
critical role of SLMs in fortifying LLM safety, emphasizing proactive
risk mitigation and enhancing overall Al safety and user trust.

4 Trustworthiness in SLMs

Despite their widespread use, small language models pose risks in
adversarial robustness, toxicity, privacy, and fairness. For a broader
overview, we refer readers to see Wang et al. [96]. Below, we high-
light recent advances in these areas for small language models.

Adversarial Robustness. Adversarial robustness in LMs refers
to a model’s ability to resist malicious inputs designed to manip-
ulate its behavior or degrade its performance [63]. Recent studies
have demonstrated that small language models are particularly
vulnerable to various forms of adversarial attacks. These include
malicious in-context demonstrations [72], adversarial word replace-
ment [114], and adversarial suffix tokens [39]. However, there is
currently no consensus on the relationship between model size
and adversarial robustness. For instance, Yang et al. [114] observed
that larger models exhibit improved robustness under adversarial
word replacement, whereas other studies [39, 72] report differ-
ent trends across different attack types. To tackle the adversar-
ial attacks, several adversarial defense techniques have been pro-
posed [47, 63, 95, 106, 118]. Yu et al. [118] introduced an adversarial
training framework to enhance model robustness, and Xhonneux
et al. [106] extended this work to defend against continuous adver-
sarial perturbations. Furthermore, certifiably robust LMs have been
proposed [47, 95], offering formal guarantees against specific classes
of adversarial prompts. Howe et al. [39] found adversarial training
more effective on larger models, implying greater training effort
should be allocated to smaller models. These findings underscore
the need for increased defensive computing and thorough
adversarial robustness evaluation in small language models
to ensure their reliability in real-world applications.

Toxicity and Refusal Behaviors. Toxicity in LMs refers to the
generation of harmful, offensive, or inappropriate content that may
cause harm to individuals or groups [97]. Modern language models
are expected not only to avoid generating toxic outputs but also to
actively refuse to respond to harmful or unsafe prompts.

Recent studies systematically benchmark toxicity and refusal
behaviors in language models ranging from SLMs to LLMs [18, 24,
74, 101, 107]. A consistent finding across these studies is that model
size does not correlate strongly with safety performance in toxicity
mitigation. For instance, LLaMA-2 7B exhibits the highest refusal
rate on harmful prompts in the Do-Not-Answer dataset [101], while
in OR-Bench [18], LLaMA-3 8B demonstrates safer behavior than
both LLaMA-3 70B and GPT-3.5-turbo-0125. Notably, Cui et al. [18]
emphasize a trade-off between helpfulness and response safety.
Similarly, SORRY-Bench [107] highlights that refusal performance
varies significantly across models and fine-grained categories. A
concerning trend emerges with on-device SLMs, particularly those
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around 3B parameters, such as Gemma-2B, and especially after
aggressive quantization (e.g., 4-bit). These models often generate
toxic, hateful, or illegal outputs without requiring jailbreak tech-
niques. This vulnerability may result from quantization masking
or removing safety layers, or from the lack of explicit refusal mech-
anisms in lightweight SLMs. These observations further reinforce
that model size alone is not a reliable predictor of toxicity or safety
in refusal behavior.

Several mitigation strategies address toxicity across different
stages of LM development. During pretraining and fine-tuning,
filtering toxic data [46, 65] and training on curated, safe datasets
using techniques such as reinforcement learning from human feed-
back (RLHF) [105] show promise. At inference time, methods like
contrastive prompting help steer generation away from harmful
content [51]. In the post-processing phase, auditing tools and classi-
fiers detect and filter toxic outputs before deployment [103]. Given
the increasing deployment of SLMs in resource-constrained settings,
future research should prioritize toxicity mitigation techniques
tailored to on-device models, especially under quantization.

Jailbreak attacks, in adversarial settings, aim to craft sophisti-
cated prompts that bypass a model’s safety mechanisms, thereby
coercing the model into responding to malicious queries and gen-
erating harmful or toxic content. Small language models often
prioritize helpfulness over harmlessness, making them particularly
susceptible to such attacks. Zhang et al. [125] conduct a compre-
hensive evaluation of SLMs under jailbreak attacks, assessing 63
models across 8 distinct attack strategies. Their findings reveal that
approximately half of the evaluated SLMs are highly vulnerable to
jailbreak prompts. Importantly, the study shows that model size
has little correlation with jailbreak vulnerability, while training
techniques play a critical role in determining the security posture
of SLMs. These observations underscore the importance of in-
corporating robust safety mechanisms during the design and
training phases of SLM development.

Privacy. Privacy-preserving capabilities of SLMs are essential, as
even basic interactions can severely disseminate personally identi-
fiable information (PII) [52, 53], potentially violating major privacy
laws like the EU’s General Data Protection Regulation (GDPR) and
the California Consumer Privacy Act (CCPA). The existing research
on SLM privacy primarily focuses on (1) benchmarking SLM privacy
issues [53] and (2) privacy-preserving strategies for SLM generation
[23, 44, 53, 117]. Regarding evaluating SLMs’ privacy, Li et al. [53]
proposes a privacy evaluation benchmark, PrivLM-Bench, to assess
the privacy issues in LMs. Three levels of attacks are implemented,
including data extraction attacks [17], membership inference at-
tacks [27], and embedding-level privacy attacks [76]. Their experi-
mental results suggest that LMs have limited privacy-preserving
capabilities. Regarding privacy-preserving strategies, research on
privacy-preserving LMs (PPLMs) mainly focuses on differential
privacy (DP) mechanisms [44, 53, 117]. Duan et al. explored DP
prompt tuning by adding noise to soft prompts for enhanced pri-
vacy. This remains an active area of research, particularly as more
organizations fine-tune small models on proprietary data, raising
open questions about how to prevent unintended data exposure. A
promising direction is to integrate differential privacy into
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parameter-efficient tuning (e.g., LoRA), develop quantization-
aware privacy controls, and build auditing tools to detect
memorization or leakage in on-device settings.

Fairness, Bias, and Stereotype. Fairness in language models
refers to the absence of unjust or prejudiced behavior toward spe-
cific groups (e.g., based on gender, race, etc.), and more broadly to
the avoidance of harmful stereotypes or biased outputs [15]. Small
language models (SLMs), like their larger counterparts, inherit bi-
ases from their training data. Cui et al. [19] introduce a benchmark
focusing on identity, credit, criminality, and health-related ques-
tions to assess fairness, and find that 7B SLMs perform significantly
worse in these aspects. Nakka et al. [74] study both on-server and
on-device SLMs and show that quantized on-device models exhibit
higher risks of stereotypical bias and unfair behaviors. AdvCoU [72]
reveals that adversarial in-context demonstrations achieve 100%
attack success rates on stereotype and sycophancy dimensions
across both small and large models. Similar to other trustworthi-
ness dimensions, there is no consistent relationship between model
size and fairness vulnerabilities [24]. Some initial efforts aim to
improve fairness in SLMs [26]. For example, Fayyazi et al. [26] pro-
pose a fairness-aware framework, FACTER, designed for LM-based
recommendation systems. FACTER employs an adaptive semantic
variance threshold and a violation-triggered tightening mechanism
to automatically enhance fairness constraints when biased patterns
are detected. It achieves up to a 95.5% reduction in fairness viola-
tions on SLMs such as Mistral-7B and LLaMA-2-7B. ROBBIE [24]
demonstrates that the effectiveness of debiasing methods varies by
model size: self-debiasing [79] is more effective on smaller mod-
els, while prompting methods are more effective on larger models.
A key open challenge is ensuring fairness in multilingual
SLMs, where biases specific to both cultural contexts and low-
resource languages are prevalent yet remain underexplored.

5 OPEN CHALLENGES AND FUTURE
DIRECTIONS

In this section, we discuss the open challenges and several corre-
sponding promising directions to further advance SLM studies with
technologies that are already applied in LLMs.

o Retrieval Augmented Generation for SLMs Recent advances
in Retrieval-Augmented Generation enhance large language model
integration of external knowledge, but do not transfer well to
small language models, which struggle with complex queries and
multi-step reasoning. A specialized RAG paradigm using graph
structures offers a promising solution for SLMs by leveraging
graph connections and hierarchical representations to reduce
cognitive load and enhance reasoning. This approach necessi-
tates developing lightweight graph-based retrieval algorithms
and hybrid data systems that integrate text with graph structures.

e Multi-agent with SLM Collaboration The SLM collaboration-
based multi-agent system is redefining development with its
suitability for distributed deployment and improved performance
in adaptive collaboration networks. Unlike a single large LLM that
demands significant resources, a network of smaller SLMs offers
dynamic calling for computational efficiency. This decentralized
approach leverages expert models to enhance task execution,
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with systems like eight SLMs outperforming a large LLM and
providing efficient advanced Al capabilities for edge devices.

e Advancing Trustworthy SLMs: Ensuring the trustworthiness
of SLMs remains a critical challenge requiring deeper investi-
gation. Key areas of focus include mitigating the generation of
toxic content and misinformation, both of which are currently
underexplored in SLMs. Additionally, no effective methods have
been developed to address sycophancy. Another pressing concern
is the design of fairness-aware SLMs that function effectively
across diverse domains while minimizing biases, thereby promot-
ing ethical and responsible Al deployment.

6 Conclusion

In this survey, we have reviewed recent advancements in small
language models in the era of large language models. We begin by
examining architectures tailored for SLMs, including Transformer
design, Mamba, and xXLSTM. We then explore weak-to-strong meth-
ods such as test-time scaling, which enhance SLMs by enabling
them to surpass LLMs and assist in the fine-tuning, decoding, and
safeguarding of LLMs. Additionally, we address the critical issue of
trustworthiness in SLMs, a significant concern in contemporary lan-
guage models. This survey concludes by offering key insights that
will inform and guide future research on small language models.
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