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Pros:

O
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Emergent ability

Generalizability

Cons:

O
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On-device deployment
Privacy leakage
Inference latency
Expensive fine-tuning

Inferior to specialized models
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Download Statistics obtained on October 7, 2024.

Smaller language models are downloaded more frequently than
larger models in the Hugging Face community.
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O Relative Definition: Lu et al. [2024], Van Nguyen et al.
[2024], Chen and Varoquaux [2024] view “small” as relative to
“large.”

o Perspective of Mobile Devices: MobileLLM Liu et al.
[2024] categorizes SLMs as models with fewer than one billion
parameters, suitable for mobile devices with up to 6GB
memory.

o Perspective of Emergent Ability: SLMs typically range
from a few million to a few billion (under 7B or 10B) 2, often
lacking emergent abilities Fu et al. [2023].

0 However, they lack consensus and no clear boundaries between
SLMs and LLMs. 7B LMs belong to an LLM or SLM?

2The Rise of Small Language Models: Efficiency and Customization for Al

Fali Wang (fairyfali.github.io) April 27, 2025 Talk at WWW SLMs Survey



o Considering both capability and resource constraints, our
definition is:

Def 1: Our SLM Definition

Given specific tasks and resource constraints, we define SLMs
as falling within a range where the lower bound is the mini-
mum size at which the model exhibits emergent abilities for
a specialized task, and the upper bound is the largest size
manageable within limited resource conditions.
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0 *Enhancement Strategy for SLMs
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0 Pre-training SLMs from scratch: Architecture choice;
Parameter Sharing; Data quality.

0 Supervised Fine-tuning: Pretrain-then-finetune; Instruction
tuning; Preference optimization.
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TinyStories Dataset Creation:

0 Vocabulary of 1500 basic words, similar to a 3-4 year-old's
vocabulary.

O Stories generated by ChatGPT/GPT-4 using three randomly
selected words (a verb, a noun, and an adjective) and
incorporating features like dialogue, plot twists, or morals.

TinyStories Instruction Dataset Creation:

Ronen Eldan and Yuanzhi Li. TinyStories: How small can language models be and still speak coherent
English?

Fali Wang (fairyfali.github.io) April 27, 2025 Talk at WWW SLMs Survey 12



Hidden size Layer Eval loss Creativity Grammar Consistency Instruct

64

64

64

64

128 6.02/0.58 7.25/0.66 7.20/0.64 6.94/0.63 6.58/0.65
128 5.97/0.57

128

128

256 - 6.66/0.71 - - 8 - B - L
256 8 1.38 6.54/0.68 7.72/0.77 8.02/0.75 7.92/0.78 7.23/0.79
256 4 1.47 6.32/0.64 7.64/0.75 7.76/0.71 8.07/0.81 7.18/0.78
256 2 1.60 6.23/0.62 7.50/0.72 7.20/0.64 7.23/0.68 6.50/0.64
512 12 119 6.90/0.75 8.46/0.93 9.11/0.89 8.21/0.83 7.37/0.82
512 8 1.20 6.85/0.74 8.34/0.91 8.95/0.87 8.05/0.80 7.26/0.79
512 4 127 6.75/0.72 8.35/0.91 8.50/0.81 8.34/0.85 7.36/0.81
512 2 1.39 6.40/0.66 7.72/0.77 7.90/0.73 7.76/0.76 7.13/0.77
768 12 118 7.00/0.77 8.30/0.90 9.20/0.90 8.23/0.83 7.47/0.84
768 8 118 7.02/0.77 8.62/0.97 9.34/0.92 8.36/0.85 7.34/0.81
768 4 1.20 6.89/0.75 8.43/0.93 9.01/0.88 8.44/0.87 7.52/0.85
768 2 3 6.68/0.71 8.01/0.83 8.42/0.80 7.97/0.79 7.34/0.81
768 1 1.54 6.00/0.58 7.35/0.68 7.25/0.64
1024 12 j1%22] 7.05/0.78 8.43/0.93 8.98/0.87 8.18/0. H
1024 8 1.20 7.13/0.80 8.25/0.89 8.92/0.87 8.47/0.87 7.47/0.84
1024 4 1.21 7.04/0.78 8.32/0.90 8.93/0.87 8.34/0.85 7.47/0.84
1024 2 1.27 6.68/0.71 8.22/0.88 8.52/0.81 8.04/0.80 7.24/0.79
1024 1 6.36/0.65 7.77/0.78 7.47/0.67

GPT-Neo (125M)
GPT-2-small (125M)
GPT-2-med (355M)
GPT-2-large (774M)
GPT-4

8.21/1.00

8.75/1.00

9.93/1.00

9.31/1.00

6.42/0.62

8.26/1.00



0

o

Hidden size Layer Eval loss Creativity Grammar Consistency Instruct
64
64
64
64
128 4 6.02/0.58 7.25/0.66 7.20/0.64 6.94/0.63 6.58/0.65
128 5.97/0.57 7.23/0.66 7.10/0.62 6.87/0.62 6.16/0.57
128 8
128
256 1.34 6.66/0.71 7.80/0.79 8.38/0.79 7.68/0.75 7.18/0.78
256 8 1.38 6.54/0.68 7.72/0.77 8.02/0.75 7.92/0.78 7.23/0.79
256 1.47 6.32/0.64 7.64/0.75 7.76/0.71 8.07/0.81 7.18/0.78
the emergent abilities in SLMs.
768 2 3 6.68/0.71 8.01/0.83 8.42/0.80 7.97/0.79 7.34/0.81
768 1 1.54 6.00/0.58 7.35/0.68 7.25/0.64 _ 6.44/0.63
1024 12 1.22 7.05/0.78 8.43/0.93 8.98/0.87 8.18/0.82 7.29/0.80
1024 8 1.20 7.13/0.80 8.25/0.89 8.92/0.87 8.47/0.87 7.47/0.84
1024 4 1.21 7.04/0.78 8.32/0.90 8.93/0.87 8.34/0.85 7.47/0.84
1024 2 1.27 6.68/0.71 8.22/0.88 8.52/0.81 8.04/0.80 7.24/0.79
1024 1 1.49 6.36/0.65 7.77/0.78 7.47/0.67 6.42/0.62
GPT-Neo (125M)
GPT-2-small (125M)
GPT-2-med (355M)
GPT-2-large (774M) - -
GPT-4 - - 8.21/1.00 8.75/1.00 9.93/1.00 9.31/1.00 8.26/1.00

-

]

Fali Wang (fairyfali.github.io) April 27, 2025 Talk at WWW SLMs Survey 13



0 *On-device SLMs and Applications
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On-device SLMs and Applications

I On-device SLMs I Applications

=,
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MobiLlama ° and MobileLLM 7 are representative sub-billion
SLMs. Why sub-billion SLMs:
O Memory constraints: An App in iPhone 15 (6GB RAM) and
Google Pixel 8 Pro (12GB) should use less than 10% of RAM.

6Omkar et al., MobilLlama: Towards Accurate and Lightweight Fully Transparent GPT
7Liu et al., MobileLLM: Optimizing Sub-billion Parameter Language Models for On-Device Use Cases
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MobiLlama ° and MobileLLM 7 are representative sub-billion
SLMs. Why sub-billion SLMs:
O Memory constraints: An App in iPhone 15 (6GB RAM) and

Google Pixel 8 Pro (12GB) should use less than 10% of RAM.

O Energy efficiency: Suppose using a 50kJ iPhone battery, at
0.1J/token per billion, and a 10 tokens/s decoding, a 7B
model lasts 2 hours, while a 350M model supports a full day.

60mkar et al., MobilLlama: Towards Accurate and Lightweight Fully Transparent GPT
7Liu et al., MobileLLM: Optimizing Sub-billion Parameter Language Models for On-Device Use Cases
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MobiLlama ° and MobileLLM 7 are representative sub-billion
SLMs. Why sub-billion SLMs:
O Memory constraints: An App in iPhone 15 (6GB RAM) and
Google Pixel 8 Pro (12GB) should use less than 10% of RAM.
O Energy efficiency: Suppose using a 50kJ iPhone battery, at
0.1J/token per billion, and a 10 tokens/s decoding, a 7B
model lasts 2 hours, while a 350M model supports a full day.
O Decoding speed: Increases from 3-6 tokens/s for 7B models
to 50 tokens/s for 125M models.

60mkar et al., MobilLlama: Towards Accurate and Lightweight Fully Transparent GPT
7Liu et al., MobileLLM: Optimizing Sub-billion Parameter Language Models for On-Device Use Cases
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A principle for SLM selection: SLM shall adapt to the target device

hardware.
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Runtime speed is more sensitive to the Pre-test results for runtime

SLM architecture than the loss. speed.

8Yi et al., PhoneLM:an Efficient and Capable Small Language Model Family through Principled Pre-training
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On-device Applications

I Generic SLMs Applications

.
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o Motivation: Hands-free.
0 Challenge: Relying on the developers’ API function design.

0 Method: LMs utilize

GUlIs.

Figure credit: Carreira et al., Revolutionizing Mobile Interaction: Enabling a 3 Billion Parameter GPT LLM on

Mobile.
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o *SLMs for LLMs
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Aspects SLMs help LLM:
O LLM Fine-tuning: Proxy of fine-tuning LLMs.
0o LLM Evaluation: Evaluator.
O LLM Safety: lightweight safeguard.
o LLM Application: Knowledge injection.
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O Future Directions
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High-Quality Data Generation from LLMs: Data quality is
crucial for fine-tuning.

Personalized On-Device Models: LoRA enables tailored,
lightweight parameter changes to meet personalized needs.
Efficient Enhancement of LLMs via Proxy SLMs: Updating
LLMs is costly; using SLMs for operations like optimization,
knowledge integration, and data selection can serve as
cost-effective proxies.

Cloud-Edge Synergy: Edge SLMs process private data while
cloud LLMs manage general data.
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